Pooya Pazhoohesh Arvid Pazh

Online Transformer Insulation Drying Techniques

a Study on T2 Transformer of Behshahr1 Electrical Power Station – Mazandaran Province

Overview

- Water in the transformer !?
- Physics of drying
- Onsite drying techniques
- Online Continuous Drying
- Online Transformer Dryer DP100
- Practical Story of Online Drying

- A moisture increase of 1% causes a doubling of the depolymerisation speed
- 4% moisture at 50°C leads to a moisture content in the oil of 50 ppm. Is the oil quickly cooled down (power failure during winter), is it possible to have free water already at 20 °C
- With a too high moisture content, there is the risk of bubble formation in the insulation at much lower hot spot temperatures as 140°C as with dry insulation

Paper Degradation

Speed of Depolymerization against Water Content [D(80°C, 0.2% H20) = 1, according to Bouvier]

Moisture Equilibrium

Moisture Equilibrium Curve (Oommen Curve)

Moisture Distribution Paper-Oil

Example: 400 MVA Transformer with 15 Tones cellulose insulation and 60 Tones oil, 3% average moisture in cellulose, 30°C average oil temperature

Over 99 % of the moisture is collected in the cellulose!

Physics of Drying

Diffusion / Drying speed is influenced by:

Temperature Humidity Material properties

Temperature is the key parameter in any drying process

Problems with Drying Transformers

Drying too short

- \rightarrow Moisture content too high
 - \rightarrow Accelerated aging
 - \rightarrow Reduced lifetime

Drying too long

 \rightarrow Energy costs, production speed \rightarrow Paper too long at hot temperature \rightarrow additional Loss of DP \rightarrow Reduced lifetime

Optimal drying time is essential
 Monitoring of moisture content necessary

On-Site Drying Methods

Oil drying Vacuum drying

Oil Circulation

Advantages

- low costssimple technique
- Iow operative expenditure

Disadvantages

long drying times
poor drying quality
shorter drying intervals required

Oil Circulation & Vacuum

Advantages

- ✤ low costs
- ✤ simple technique
- drying improvement compared to solely oil circulation

Disadvantages

- Iong drying times
- ✤ various cycles required
- tank for oil storage

Hot Oil Spray

Advantages

- constant heat feeding under vacuum
- ✤ good drying results

Disadvantages

- ✤ difficult heating of the internal parts
- \clubsuit location of the spraying nozzle critical

LFH and Hot Oil Spray

Advantages

- constant heat feeding under vacuum
- Heat from inside and outside
- Short drying time
- Excellent drying results

Disadvantages

- ✤ larger investment
- only reasonable for larger transformers

Drying potentially endangers the solid insulation as the winding coil usually is not re-fastened after drying (>>> stability in case of short circuit)

Online Continuous Drying

*****Drying as a continuous procedure:

The liquid insulation is <u>continuously</u> dried during transformer operation.

Through the drying of the liquid insulation the solid components are dried as well.

Such systems are advantageous for already impregnated transformers with moderate water strain. The drying is performed during regular transformer operation, thus no outage is required.

Online Continuous Drying

*****Drying as a continuous procedure:

One of the most <u>important advantages</u> of continuous drying procedures in <u>comparison</u> to other on site drying procedures is the considerate treatment of the insulation

Caution: It should be looked out that the system does not influence the amount of failure gases as the failure gases are important for protection and diagnosis purposes in a transformer [Fofana & Borsi 2004]

Online Continuous Drying

Colored States Colored States Colored

- Cellulose Cartridge Filters
- Molecular Sieves

Cellulose Cartridge Filters

Humidity sensor

Features:

- **Reduction in particle count** \succ
- \succ Some increase in Breakdown Voltage and IFT, and a decrease in Acid Number

20

- **Removal of furans** \geq
- No Reduction in dissolved gas concentration \geq

Adsorbents – Zeolite Molecular Sieve (BASF CO. Germany)

22

23

✤Initial Test – Oil Lab

24

Initial Test (Oil Lab) – Qualitative Results

Initial Test (Oil Lab) – Quantitative Results

Measureme	nt log		
Measurem	ent result		-
Epsilon:		2.11	
Tangens o	felta:		
at 50Hz:		0.025508	
at 60Hz:		0.021256	
Rho+:		3.73E+10 Ωm	
Rho-:		3.88E+10 Ωm	
Criterion	according to	the standard!	
Back	<u>ि</u> र	🕽 Deta	ails

Measurement	result		0.10
Tangons dolta	2*		C.11
at 50Hz:	•	0	020550
at 60Hz:		0.017	
Rho+:		4.61E+10	
Rho-:		5.25E+10	
Criterion acco	ording to	the sta	ndardt
Back	<u>ۍ</u>	0	Detai
		2	

25

Certificate of Oil Antioxidant Adsorption Test

به: مدیریت شرکت پویا پژوهش آروید پاژ

موضوع: بررسی میزان آنتی اکسیدان (DBPC) در روغن

با سلام و احترام

دانشگاه آزاد انتقامی واهد قومان

عظه به درخواست آن شرکت جهت انجام آزمایش میزان آنی اکسیدان (DBPC) برروی دو نمونه روغن دریاقت شده (مربوط به قبل و بعد از عملیات خشکسازی با دستگاه خشک کن آنلاین ترانسفزرماتور (OD-100)، به استحمار میرساند نتایج ست مذکور نشان میدهد که میزان آنتی اکسیدان در هر دو نمونه با نفرسه قابل قبولی یکسان بوده که بیانگر تاثیر ناچیز عملیات خشکسازی توسط زلولیت ۴ آنگستروم بر میزان این ماده شیمیایی در روغن می باشد. برگه نتیجه آزمایش به پیوست ارسال میگردد.

باسمه تعالى

=9, Wayse1

الوچان = گیارمتر ۵ جاده قرچان،مشهد مجنبع داننگانه آزاد اسلامی راحد قوچان - منتدرق پستی: ۲۲۲ کدیستی ۱۶۷۹/۱۱۳۶ نقارت ۱۰۰ (۲۰۱۹)

Detection of DBPC in general oil

 Test Object
 Butylatedhydroxytoluene (2,6 –Di-tert-butyl-p-cresol)

 Alias
 DBPC

 Chemical Formula
 C₁₅H₂₄O

Test Date	Sample 1 (After Drying)	Sample 2 (Before Drying
07 oct 2018	0.204%	0.199%

Date of Certificate: 10Oct 2018

Head of Analytical Chemistry Laboratory Deputy of Research and Technology

Amalytical Chemistry Laboratory Deputy of Research and Tech Dr. Mokamad/Reza Abedi Dr. Ali Mohamadi Sani Islamic Azad University-Quchan Brance and Asa

Primary Design

28

Device Manufacturing

29

Device Manufacturing

30

Sensor Calibration on Lab

♦ DP100 on Exhibition

32

Primary Drying Test

Before After

8 37

Test Results

8 39

6 40

Advantages

- ✓ Online dehydration of transformer oil
- ✓ Raising breakdown Voltage
- ✓ Paper insulation dehumidifying
- ✓ Removing oil particles
- $\checkmark\,$ Reduction of oil insulation loss factor
- ✓ Reduction oil acidity
- ✓ Increasing transformer load capacity
- ✓ Increasing transformer age
- \checkmark Improve most of chemical parameters and no effect on oil gases

Home Screen Page

A4

Auto and Manual Operation Pages

Setting Page

Alarms and Warnings Page (Safety Interlock)

Water Absorption Page

Time Sets Page

Calibration Pages

Automatic Pump control Page

SIEMENS	SIMATIC HMI
Auto Back Pump Freq. Setpoints	natic PUMP Control
V1 = 00.00 Vmin 0 $V2 = 00.00 0$ $V3 = 00.00 0$ $V4 = 00.00 0$ $V5 = 00.00 0$ $V6 = 00.00 Vmax 0$	0.000 ppm Flow Rate: 0000.00 Litr/hour 0.000 ppm Pump Speed: 00.00 Hz 0.000 ppm Temperature: 000.00 °C 0.000 ppm Vopt = 00.00 Hz
F1 Pump Freq. (Check Time:	F4 F5 F6 F7 F8

Transformer Level Page

Trend Pages

Log table Page

A True Story of DP-100 on T2 Transformer of Behshahr1 Electrical Power Station

Transformer Location: Behshahr city – Mazandaran Province

Altitude

54

. 525

T2 Transformer of Behshahr1 Station

Device Commissioning

Æ

- 56

FDS test before drying

Connections

*Air Trapping

ر کلی ا

) 59

Operation and Parameters

SMS Text message

Behshahr1 (T2) Station - Mazandaran Province Date: 2019/01/22 - Time: 16:41:33

Parameters: Pressure Filter1: 0.05 bar Pressure Filter2: 0.03 bar Temperature: 12.91 oC Absorbed Water: 63.4 mL Humidity Intput: 0.88 ppm Humidity Output: 0.02 ppm

4:42 PM

Write a message...

Results

